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Abstract—A general solution to the energy equation under zero wall temperature or zero heat flux

boundary condition for the decay of an inlet and initial temperature distribution of an incompressible

transient turbulent flow heat transfer between two parallel plates is given. It is shown that these solutions

may then be used to obtain solutions due to unit steps in wall temperature or wall heat flux which is

sufficient to sort out prescribed wall temperature and prescribed wall heat flux boundary condition.

The results are confirmed experimentally by the frequency method. An experimental apparatus has been
designed, built and used for this purpose.

NOMENCLATURE
D(=a+g,), effective diffusivity;
D,(=2d), equivalent diameter;
K(=k+pcye), effective thermal conductivity of
fluid;
T, temperature;
U, V, velocity components in x, y;
Cp» specific heat at constant pressure;
d, distance between parallel plates;
k, molecular thermal conductivity of fluid;
t, time;
il, average velocity;
x,y, cartesian coordinates (x-flow direction,
y-distance from wall);
a, =k/pc,, thermal diffusivity;
Pr, = ¢, p/k, Prandtl number;
Re, = 2iid/v, Reynolds number;
B, inlet frequency;
o, Y, parameters;
d, phase lag;

&h» eddy diffusivity for heat.

1. INTRODUCTION

THESTUDY of unsteady forced convection heat transfer
in tubes and ducts has recently become of greater
importance in connection with the control of modern
high performance heat transfer devices. Literature on
thermal transient is limited but increasing. Some of the
important contributions are listed in the references
{1-21].

Previous solutions to the problem of transient forced
convection have assumed constant velocity across the
flow, in association with either constant conductivity
or constant temperature across the flow. Alternatively
a form of integral approximation across the flow has
been used.
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For steady-state forced convection studies the con-
cept of an “effective thermal conductivity” ranging in
a known manner across the flow has given good agree-
ment with experiment. The concept is here extended
to the transient case, and a comparison made with
experimental results at various Reynolds numbers.

The purpose of the work is firstly to make a further
and more severe check on the validity of effective
thermal conductivity, and secondly to produce a more
accurate method of evaluating transients in thermal
processes.

It is convenient to consider first the case of either
zero temperature along the walls of the tube or duct
or zero heat flux along the walls. These solutions may
then be manipulated to obtain solutions due to unit
steps in wall temperature or wall heat flux and by
superposition of step solutions any arbitrary boundary
condition may be studied.

Besides the boundary conditions it is also necessary
to satisfy initial conditions and entry conditions. Con-
sideration of these is best deferred until the general
form of solution is seen. In this paper the algebra will
be written for the case of duct geometry; the case of
tube geometry will be apparent.

2. SOLUTIONS FOR ZERO BOUNDARY CONDITION

Consider a parallel plate channel whose sides are
separated by a distance d. The paraliel plate channel
under consideration is shown in Fig. 1. Axial distances
from the entrance section are measured by coordinate
x, while transverse distances are measured by y.
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FIG. 1. Geometry of the system.
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Starting point of the analysis is the unsteady equation
for a fully-developed hydrodynamic flow in a parallel-

sided duct.
orT oT a oT
—+U—|=—(K— 1
pc”(@t + ax) 6y< 5y> ()

where K is the effective thermal conductivity.

The system satisfying the equation (1) is subjected
to the following restrictions:

(a) The fluid velocity profile does not vary along the

length of the duct.

(b) The mean velocity in the y-direction is zero.

(c) The effective thermal conductivity K consisting
of the superimposed effects of molecular conduc-
tivity, will be assumed to depend on the distance
y only.

(d) The effective conductivity K' will be assumed
independent of temperature T. This assumption
is valid for a K which is largely governed by
turbulence, it is not particularly good if tem-
perature variations are large, due to consequent
changes in p and c,.

(¢) Frictional dissipation of energy is negligible.

(f) Axial diffusion is negligible with respect to bulk
transport in the x-direction. This is a reasonable
assumption when Péclet number exceeds 100
[4].

In order to keep the problem linear, it is necessary
to assume that the product ¢, p is independent of tem-
perature T'; in steady-state studies this has not been
found very limiting, and it will be no more limiting in
the transient state.

The equation may then be written

VT2 (p7
5x_6y Jy

where D is the effective thermal diffusivity, dependent
on y. It may easily be confirmed that the following
expressions satisfy equation (1a).

and

oT

- (1a)

T(x, y, t) = [Psin(Bt — bx) +Q cos(ft — bx)] e~

T(x, y, 1) = [P cos(Bt — 6x) — Q sin(t —6x)] ¢ ~** )
where P and Q satisfy
i<Dd—P> = —aUP+(U-p)Q
dy\ dy
d/ do (2a, b)
@(D@) = —aUQ—(6U-B)P
and
T(x, y, t) = [Rsin(dx— Bt) + S cos(dx — pt)] e ™ o
T(x,y,t) = [Rcos(dx— pt) — S sin(x— pr)] e
where R and S satisfy
di(ngﬁ) = —yR—(6U—P)S
y y Gab)

d ds
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Solutions of equations (2a, b) give rise to four pairs of
functions P(y) and Q(y). Consider the case of a duct
withwallsat y = Oand y = d and a boundary condition
of zero temperature at each wall. It is then necessary
that P(y) and Q(y) should vanish at each wall. From
the four pairs of functions three pairs still satisfying
equation (2a, b) can be formed by linear combination
such that P(y) vanishes at y = 0. From these three
pairs two pairs can be formed such that Q(y) also
vanishes at y = 0.

It is seen that from expression (2) that there is a
relationship between these two pairs of functions. If the
first pair is denoted by P(y), Q(y) then the second pair
is denoted by — Q(y), P(y); in these pairs, the coefficient
of the sine term is written first, and is followed by
the coefficient of the cosine term. By linear com-
bination, a single pair may be formed such that the
coefficient of the sine term vanishes at y = d.

The pair obtained is

Qd)P(y) - Pd)Q(); Q(d)Q(y) + P(d)P(y).

At y = d the first function in this pair vanishes. The
second function in the pair becomes Q*(d)+ P*(d) at
y = d, and can only vanish there, if P(d) = Q(d) =0.
Two conditions thus arise, and it is useful to consider
these as specifying « and § in terms of §. In fact for
a given flow regime, that is for a given Reynolds
number, every value of 8 gives rise to a set of eigenvalues
for & and 4 and a corresponding set of eigenfunctions
for P and Q are also obtained.

Precisely identical reasoning leads to the same con-
clusion (with different numerical values for a and )
if either or both boundary conditions of zero tem-
perature are replaced by boundary conditions of zero
heat flux. The same reasoning may also be applied to
functions R(y) and S{y) with similar boundary con-
ditions. In this case it is useful to regard § and y as
specified in terms of §; eigenvalues and eigenfunctions
again arise.

If subscripts m and n represent different eigenvalues
and the corresponding eigenfunctions, it may be shown
that

d
f U(PyP,— 0, Q,)dy =0
0

d
J U(PyQu+ P, Q)dy =0
0]
and

d

L (R R, — S5, 5,)dy = 0
d

J (RmSp+ RySp)dy = 0.
0o

In view of this orthogonality it is reasonable to
assume that the set of functions P,, Q, is complete, and
that the set R,, S, is also complete.

3. ENTRY CONDITIONS AND INITIAL CONDITIONS

If the functions P(y) and Q(y) are taken as normalized
in the same way, the most general solutions based on
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expression (2) and (3) which may be written down, are

[,
7z,
1)
),

putting x =0 in expression (4a), and ¢t =0 in ex-
pression (4b)

An(ﬂ)[Pn(ﬂs .V) Sin(ﬂt - 5,,X)
+ Qn(B’ y) COS(ﬂt - 5,,X)] e dﬂ

Bn(ﬁ)[Pn(ﬂa y) COS(BI - 6,,)()
—Q.(B, y)sin(Bt—5,x)]e**dp (4a)

AB)[Ro(3, y)sin(dx— Br)
+ 84(8, y)cos(6x — )] e " dé

Bi(8)[Ru(S, y) cos(5x — Bt)

—5,(8, y)sin(éx—pr)]e~"dd  (4b)

> Lw An(B)[Pu(B, y)sin ft +Qu(B, y) cos Br]dp

+Y, L B,(B)[Pu(B, y) cos Bt —Q,(B, y)sin ft]1df (5a)
and

Y j ? AR(B)[R,(8, y)sin 6x + S,(8, y) cos x] dé
n JO

+ZJ B(8)[Ra(S, y)cos 8x— 5,(6, y)sin 6x] db. (5b)

Recalling the assumption about the completeness
ofthe set of functions P,, @, and remembering Fourier’s
integral theorem, inspection of expression (5a) suggests
that it might be capable of representing a perfectly
general entry condition from —oo to +o0 in time,
and from O to d in y. If this is so, expression (4a) then
represents the temperature distribution in the duct due
to this entry condition.

Let f(y, t) be a general inlet condition with0 < y < d;
— o0 <t < 0. Then by Fourier integral theorem

£, = f C(B, )sinprdp + f D(B, y)cos Bt B
where
C(B.y) = %f: £, )i P
and

D(B,y) = %J_ N Sy, u)cos fudu.

Comparing the above with expression (5a), it remains
to find A, and B, satisfying

3 [A4.(8)Q4(B, ) + Bu(B)Px(B, )] = D(B, y).
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Suppressing the §, it may be shown that

d d
A4, L U[P}()-0i(»)]dy—2B, L UP.(y)Qx(y)dy

d d
=L UCKIP)dy - J UDGIQ0)dy
) , 6
2,4,[0 UP,(y)Q.(y)dy+ B, L U[P}(y)-Qa(»)]dy

d 4
= L UC(»)Qa(y)dy +L UD(y)P,(y)dy.

From which 4, and B, may be found. A method of
solution for a duct extending from zero to infinity in x
with an entry condition known from minus infinity to
plus infinity in time has therefore been established. This
solution is based on expression (2). As a special case
of the decay of the general inlet temperature distri-
bution, in [20] a solution for the decay of inlet
temperature distribution which varies sinusoidally in
time is presented; and in [ 18], a specified consideration
is given to laminar flow in a parallel plate channel
for time varying inlet temperature and participating
walls.

Expressions (3) similarly form the basis of a method
of solution for a duct extending from zero to infinity
in time with an initial condition known from minus
infinity to plus infinity in x. Let x(x, y) be a general
initial condition with 0 <y <d, — o0 < x < o0, then
by Fourier integral theorem

@«

x(x, y) = f Ciy(d, y)sindx dé +J D4, y)cos 6x dd
0 1]

where C,(x, y) and D'(, y) can be determined depending

on the nature of the orthogonalities involving R and S.

The case most often occurring in practice is a duct
which may be deemed to extend from zero to infinity
in x and also from zero to infinity in time. The
solution to this problem is found by adding two
solutions. These are,

(a) The case of duct extending from zero to infinity
in x, with zero entry temperature for all ¢ <0, and the
correct entry temperature variation for ¢t > 0.

(b) The case of a duct extending from minus infinity
to plus infinity in x, with zero initial temperature for
all x <0, and the correct initial temperature distri-
bution for x > 0.

In (a) the zero entry temperature for all 1 < 0 means
that at ¢t = 0 the temperature given by (a) is zero in
the duct. In (b) the zero initial temperature for all x < 0
means that at x =0 the temperature given by (b) is
zero for all t > 0.

4. SOLUTIONS FOR ARBITRARY BOUNDARY
CONDITIONS

Boundary conditions of prescribed wall temperature
and prescribed wall heat flux may be built up by super-
position from solutions for unit steps in wall tem-
perature or wall heat flux respectively.

The complete solution is in general then a sum of
three terms. These are the initial condition, the entry
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condition, and the boundary condition. If the initial
condition is known from minus infinity to plus infinity
in x, then no entry condition arises. If the entry con-
dition is known from minus infinity to plus infinity in
time then no initial condition arises.

In this section the case of a unit step in wall tem-
perature of a semi-infinite duct will be found. The step
is assumed to occur at zero time and to extend over
all x > 0. From this any arbitrary wall temperature can
be found. A similar process applies to wall heat flux.

Let ¢ be a solution for unit entry condition for ¢ > 0,
with zero initial condition for x > 0, and zero boundary
condition. Then

¢=1 atx=0 forall t>0
¢=0 at =0 foral t>0
(ie.¢p=0 atx=0 forall t<0)
¢=0 aty=0 and Y=d

let ¥ be a solution for unit initial for x > 0, with zero
entry condition for t > 0 and zero boundary conditions.
Then

=0 at x=0 forall >0
(ie. y=0 at t=0 forall x<0)

Yy=1 at t=0 forall x>0

Yy=0 atY=0 and y=d

Consider

0=1-¢p—-V¥

0=0 atx=0 forall >0
=0 att=0 forall x>0
=1 aty=0 and y=d.

Therefore 0 is the required solution for a step in wall
temperature with zero initial condition and zero entry
condition. Similar techniques apply to more com-
plicated cases.

5. COMPARISON WITH EXPERIMENT

The form of equations (2) and (3) suggest that the
results can be best confirmed experimentally by the
frequency method. By this method, the parameters
and eigenvalues appearing in the general solution can
be determined. An apparatus has been designed and
used for the frequency analysis of an inlet temperature
distribution for forced convection with fully developed
flow between two parallel plates. This apparatus and
technique was partly described in [20]; but the full
description of the apparatus and frequency analysis
methods will be given in another paper. The boundary
conditions used were zero temperature at one side of
the duct and zero heat flux at the other. The response
to the sinusoidal variation of heat input has been
recorded on a strip-chart. From these recordings the
amplitudes at various points along the duct have been
presented in graphical forms for various inlet fre-
quencies; phase lags in the response to the sinusoidal
variation of heat input have been determined along the
duct for various values of Reynolds numbers and inlet
frequencies [20]. Further experiments have been con-
ducted for the decay of inlet temperature distribution
along the duct.
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As the frequency f of the sine wave at the inlet was
varied, it was possible from these measurements to
obtain the values of « and 0 for the lowest eigen-
function after the higher eigenfunctions excited had
damped out, Figs. 2 and 3.
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6. CONCLUDING REMARKS

Solutions determine the temperature distribution as
a function of time and space in the form of the sum
of two infinite series, each term of which consists of a
product of an exponential and two functions. These
solutions mean that any initial temperature or inlet
temperature distribution may be regarded as the resuit
of the superposition of a number of modes of periodic
distributions. Each decays exponentially with time or
with the distance along the duct.

From the experimental results, it is seen that the
decay of the inlet temperature distribution near the
entrance region is not a single exponential. It consists
of modes of higher frequency. The basic mode of the
inlet temperature varies exponentially along the
channel and the value of the temperature at a given
point depends on the inlet frequency and Reynolds
number. For given fluid as Reynolds number increases
decay decreases.

Phase lags have been found to be increasing linearly
with distance. Phase lag increases as inlet frequency
increases and decreases as Reynolds number increases.
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The apparatus available did not permit the deter-
mination of y, but construction of a new apparatus is
being under consideration.

Acknowledgements—The author gratefully acknowledges the
financial support of the Scientific and Technical Research
Council of Turkey, Scientific Affairs Division of NATO.
The author wishes to express his appreciation to Dr. P. H.
Price of the Simon Engineering Laboratories of Manchester
University for his valuable suggestions, to Dr. T. N.
Veziroglu of the Department of Mechanical Engineering
of the University of Miami for his encouragement and to
Dr. Y. Yener for his assistance in experimentation.

REFERENCES

1. G.M. Dusinberre, Calculation of transient temperatures
in pipes and heat exchangers by numerical methods,
Trans. Am. Soc. Mech. Engrs 76, 421 (1954).

2. J.M. Rizika, Thermal lags in flowing systems containing
heat capacitors, Trans. Am. Soc. Mech. Engrs 76, 411
(1954).

3. J. M. Rizika, Thermal lags in flowing incompressible
fluid systems containing heat capacitors, Trans. Am. Soc.
Mech. Engrs 78, 1407 (1956).

4. P. J. Schneider, Effect of axial fluid conduction on heat
transfer in the entrance regions of parallel plates and
tubes, Trans. Am. Soc. Mech. Engrs 79, 766 (1957).

5. J. A.Clark, V. 8. Arpaci and K. M. Trendwell, Dynamic
response of heat exchangers having internal heat
sources—I, Trans. Am. Soc. Mech. Engrs 80, 612 (1958).

6. V. S. Arpaci and J. A. Clark, Dynamic response of heat
exchangers having internal heat sources—II, Trans. Am.
Soc. Mech. Engrs 80, 625 (1958).

7. V. 8. Arpaci and J. A. Clark, Dynamic response of heat
exchangers having internal heat sources—III, J. Heat
Transfer 81C, 253 (1959).

1453

8. R. Siegel and E. M. Sparrow, Transient heat transfer
for laminar forced convection in the thermal entrance
region of flat ducts, J. Heat Transfer 81C, 29 (1959).

9. R. Siegel, Transient heat transfer for laminar slug flow
in ducts, J. Appl. Mech. 81E, 140 (1959).

10. E. M. Sparrow and R. Siegel, Unsteady turbulent heat
transfer in tubes, J. Hear Transfer 87C, 170 (1960).

11. R. Siegel, Heat transfer for laminar flow in ducts with
arbitrary time variations in wall temperature, J. Appl.
Mech. 82E, 241 (1960). )

12. M. Perimutter and R. Siegel, Unsteady laminar flow
in a duct with unsteady heat addition, J. Heat Transfer
83C, 432 (1961).

13. R. Siegel and M. Perlmutter, Laminar heat transfer in
a channel with unsteady flow and wall heating varying
with position and time, J. Heat Transfer 85C, 358 (1963).

14. J. L. Hudson and S. G. Bankoff, Asymptotic solutions
for the unsteady Graetz problem, Int. J. Heat Mass
Transfer 7, 1303 (1964).

15. S. Kakag, Transient heat transfer by forced convection
in ducts, Ph.D. Thesis, University of Manchester,
England (1965).

16. A. Kardas, On the problem in the theory of the uni-
directional regenerators, Int. J. Heat Mass Transfer 9,
567 (1966).

17. A. J. Gram and G. W. Kessler, New regenerative air
heater, Mech. Engng 88(9), 45 (1966).

18. E. M. Sparrow and F. N. De Farias, Unsteady heat
transfer in ducts with time-varying inlet temperature
and participating walls, Int. J. Heat Mass Transfer 11,
837 (1968).

19. S. Kakag, Transient turbulent flow in ducts, Wirme-
Und Stoffiibertragung 1, 169 (1968).

20. S. Kakag and Y. Yener, Exact solution of the transient
forced convection energy equation for timewise variation
of inlet temperature, Int. J. Heat Mass Transfer 11,
2205 (1973).

21. M. N. Ozisik, Boundary Value Problems of Heat Con-
duction. International Textbook, Scranton, PA (1968).

UNE SOLUTION ANALYTIQUE GENERALE DE L’EQUATION DE LA CONVECTION
FORCEE INSTATIONNAIRE EN ECOULEMENT ETABLI

Résumé—On donne la solution générale de 'équation d’énergie pour la décroissance d’une distribution
initiale de température d’admission dans un écoulement turbulent incompressible instationnaire entre
deux plaques paraliéles avec des conditions aux limites a température nulle ou a flux thermique nul
ala paroi. On montre que ces solutions peuvent alors étre utilisées pour obtenir les solutions correspondant
4 des échelons unité de la température de paroi ou du flux pariétal, suffisantes pour choisir les conditions
aux limites 4 température de paroi imposée ou a flux pariétal imposé. Les résultats sont confirmés
expérimentalement a 'aide de la méthode de fréquence. Un appareil expérimental a été congu, réalisé
et utilisé dans ce but.

ALLGEMEINE LOSUNG DER GLEICHUNG FUR ERZWUNGENE KONVEKTION
IM UBERGANGSBEREICH BEI VOLL AUSGEBILDETER STROMUNG

Zusammenfassung—FEs wird eine allgemeine Losung der Energiegleichung fiir den Abbau einer
anfinglichen Eintrittstemperaturverteilung einer inkompressiblen Strémung im Ubergangsbereich bei
Wirmeaustausch zwischen zwei parallelen Platten angegeben.

Es wird gezeigt, daB diese Lésungen dann benutzt werden konnen, Losungen fiir schrittweise gednderte
Wandtemperaturen oder Wirmestrome an der Wand zu erhalten, so daB es mdglich wird, nach
vorgegebenen Randbedingungen fiir Temperatur und Wérmestrom an der Wand auszulesen. Die
Ergebnisse werden experimentell mit Hilfe des Frequenzen-Verfahrens bestitigt. Zu diesem Zweck wurde

ein Versuchsapparat entworfen und aufgebaut.
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OBUIEE AHAJIMTUYECKOE PEUWIEHUE YPABHEHMS HECT ALIMOHAPHOM
BbIHYXXJEHHOHW KOHBEKLUHWH IPU MOJHOCTBKO PA3BHUTOM TEYEHHU

Anvoraunn — [Ipeacrasieno ofulee pellleHWE YPaBHEHHMS JIHEPIHH NPH TIPaHHYHBIX YCIOBHAX
HYJIEBOM TEeMNepaTypbl CTEHKH MJIM HYJIEBOTO TEILIOBOTO MOTOKA AJIA 3aTYXAIOIIETO PaclpeaeieHus
TeMnepaTypbel Ha BXOJE€ M HavaJIbHON TeMIepaTypbl HECTAUHMOHAPHOro TypOyJNEeHTHOro NOTOKa
HECHKUMAEMOM XXHUAKOCTH MEXAY ABYMS Napa/sefbHbIMY nnacTiHaMu. IToka3aHo, YTO 9TH pelueHus,
Onaroaaps eIMHUYHLIM CKavKaM B TEMIEPATYPE CTEHKH WJIM TENJIOBOTO IOTOKA Ha CTEHKE, MOTYT
ObITb 3aTEM HCMOJIL30BaHbl IJIS MOJYYEHHS pEIUEHHN ¢ FPaHUYHBIMH YCJIOBHAMH 3aJaHHOM TeM-
nepaTypbl CTEHKH M 3aJaHHOTO TEIUIOBOrO NOTOKA Ha CTeHKe. Pe3ynbTaThl NOATBEPXAAIOTCA 3KC-
MepUMEHTANBHO C HOMOLUbLK YaCTOTHOIO MeTOHa, AMA 4Yero Obijia CIPOEKTHPOBaHA H ITOCTPOEHA
IKCNEPHMEHTANBHAS YCTAHOBKA.



