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Abstract-A general solution to the energy equation under zero wall temperature or zero heat flux 
boundary condition for the decay of an inlet and initial temperature distribution of an incompressible 
transient turbulent flow heat transfer between two parallel plates is given. It is shown that these solutions 
may then be used to obtain solutions due to unit steps in wall temperature or wall heat flux which is 
sufficient to sort out prescribed wall temperature and prescribed wall heat flux boundary condition. 
The results are confirmed experimentally by the frequency method. An experimental apparatus has been 

designed, built and used for this purpose. 

NOMENCLATURE 

D(=a+srJ, effective diffusivity; 

D,( = 24, equivalent diameter; 
K( = k+~c~s,,), effective thermal conductivity of 

fluid; 

T, temperature; 
U, V, velocity components in x, y; 

CPP specific heat at constant pressure; 

4 distance between parallel plates; 

k, molecular thermal conductivity of fluid; 

r, time; 

R, average velocity; 

x, Y9 cartesian coordinates (x-flow direction, 

y-distance from wall); 

a, = kJpc,, thermal diffusivity; 

Pr, = cpp/k, Prandtl number; 

Re, = 2iid/v, Reynolds number; 

B, inlet frequency; 

a, “$9 parameters; 

6, phase lag; 

Eh, eddy diffusivity for heat. 

1. INTRODUCTION 

THE STUDY of unsteady forced convection heat transfer 

in tubes and ducts has recently become of greater 
importance in connection with the control of modern 
high performance heat transfer devices. Literature on 

thermal transient is limited but increasing. Some of the 

important contributions are listed in the references 
[l-21]. 

Previous solutions to the problem of transient forced 
convection have assumed constant velocity across the 
flow, in association with either constant conductivity 
or constant temperature across the flow. Alternatively 
a form of integral approximation across the flow has 
been used. 

*Presently, Visiting Professor in the Department of 
Mechanical Engineering, University of Miami, P.O. Box 
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For steady-state forced convection studies the con- 
cept of an “effective thermal conductivity” ranging in 
a known manner across the flow has given good agree- 
ment with experiment. The concept is here extended 

to the transient case, and a comparison made with 

experimental results at various Reynolds numbers. 
The purpose of the work is firstly to make a further 

and more severe check on the validity of effective 
thermal conductivity, and secondly to produce a more 

accurate method of evaluating transients in thermal 
processes. 

It is convenient to consider first the case of either 
zero temperature along the walls of the tube or duct 

or zero heat flux along the walls. These solutions may 
then be manipulated to obtain solutions due to unit 

steps in wall temperature or wall heat flux and by 

superposition of step solutions any arbitrary boundary 
condition may be studied. 

Besides the boundary conditions it is also necessary 

to satisfy initial conditions and entry conditions. Con- 
sideration of these is best deferred until the general 
form of solution is seen. In this paper the algebra will 

be written for the case of duct geometry; the case of 
tube geometry will be apparent. 

2. SOLUTIONS FOR ZERO BOUNDARY CONDITION 

Consider a parallel plate channel whose sides are 
separated by a distance d. The parallel plate channel 

under consideration is shown in Fig. 1. Axial distances 
from the entrance section are measured by coordinate 
x, while transverse distances are measured by y. 

FIG. 1. Geometry of the system. 
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Starting point of the analysis is the unsteady equation 
for a fully-developed hydrodynamic flow in a parallel- 
sided duct. 

where K is the effective thermal conductivity. 
The system satisfying the equation (1) is subjected 

to the following restrictions: 

(4 

(b) 
(4 

(4 

The fluid velocity profile does not vary along the 
length of the duct. 
The mean velocity in the y-direction is zero. 
The effective thermal conductivity K consisting 
of the superimposed effects of molecular conduc- 
tivity, will be assumed to depend on the distance 
y only. 
The effective conductivity K’ will be assumed 
independent of temperature T. This assumption 
is valid for a K which is largely governed by 
turbulence, it is not particularly good if tem- 
perature variations are large, due to consequent 
changes in p and cp. 
Frictional dissipation of energy is negligible. 
Axial diffusion is negligible with respect to bulk 
transport in the x-direction. This is a reasonable 
assumption when P&let number exceeds 100 

[41. 
In order to keep the problem linear, it 1s necessary 

to assume that the product cpp is independent of tem- 
perature T; in steady-state studies this has not been 
found very limiting, and it will be no more limiting in 
the transient state. 

The equation may then be written 

dT ~+ucT2. Dar 
ax ay ( 1 ay (14 

where D is the effective thermal diffusivity, dependent 
on y. It may easily be confirmed that the following 
expressions satisfy equation (la). 

T(x, y, t) = [P sin@ -6x) + Q cos(@ - Sx)] eenx 

T(x, y, t) = [P cos(pt - 6x) -Q sin(Bt - Sx)] eTax 
(*) 

where P and Q satisfy 

= -uUP+(cW-P)Q 

= -uUQ-(SU-fi)P 
(2s b) 

and 

T(x, y, t) = [R sin(dx - fit) + S cos(dx - /It)] eeY* 

T(x, y, t) = [R cos(6x - Pt) -S sin(6x - /?t)] e-?’ 

(3) 

where R and S satisfy 

(3% b) 

Solutions of equations (2a, b) give rise to four pairs of 
functions P(y) and Q(y). Consider the case of a duct 
with walls at y = 0 and y = d and a boundary condition 
of zero temperature at each wall. It is then necessary 
that P(y) and Q(y) should vanish at each wall. From 
the four pairs of functions three pairs still satisfying 
equation (2a, b) can be formed by linear combination 
such that P(y) vanishes at y = 0. From these three 
pairs two pairs can be formed such that Q(y) also 
vanishes at y = 0. 

It is seen that from expression (2) that there is a 
relationship between these two pairs of functions. If the 
first pair is denoted by P(y), Q(y) then the second pair 
is denoted by -Q(y), P(y); in these pairs, the coefficient 
of the sine term is written first, and is followed by 
the coefficient of the cosine term. By linear com- 
bination, a single pair may be formed such that the 
coefficient of the sine term vanishes at y = d. 

The pair obtained is 

QWCv)-WQO1); Q(4QW+W%9. 

At y = d the first function in this pair vanishes. The 
second function in the pair becomes Q’(d) + P’(d) at 
y = d, and can only vanish there, if P(d) = Q(d) = 0. 
Two conditions thus arise, and it is useful to consider 
these as specifying u and 6 in terms of fi. In fact for 
a given flow regime, that is for a given Reynolds 
number, every value of /I gives rise to a set of eigenvalues 
for tl and 6 and a corresponding set of eigenfunctions 
for P and Q are also obtained. 

Precisely identical reasoning leads to the same con- 
clusion (with different numerical values for c( and 6) 
if either or both boundary conditions of zero tem- 
perature are replaced by boundary conditions of zero 
heat flux. The same reasoning may also be applied to 
functions R(y) and S(y) with similar boundary con- 
ditions, In this case it is useful to regard /I and y as 
specified in terms of 6; eigenvalues and eigenfunctions 
again arise. 

If subscripts m and n represent different eigenvalues 
and the corresponding eigenfunctions, it may be shown 
that 

and 

s 

d 

UV’mR- QmQJdy = CJ 
0 

s 

d 

W,, Q.+J'nQnld~ = 0 
0 

s 

d 

UWL--SSiJdy = 0 
0 

5 

d 

VLtSt+RJm)dy = 0. 
0 

In view of this orthogonahty it is reasonable to 
assume that the set of functions Pn, Qn is complete, and 
that the set R,, S,, is also complete. 

3. ENTRY CONDITIONS AND INITIAL CONDITIONS 

If the functions P(y) and Q(y) are taken as normalized 
in the same way, the most general solutions based on 
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Suppressing the fl, it may be shown that 

1451 

expression (2) and (3) which may be written down, are 

zsm 
&(B)[P,(B, Y) sin(@ - 6,~) 

n 0 
+ Qn(B, Y) cos(P - 6.x)] e-“nxdS 

+C 
s 

m W)CP,(B, Y) WBt -6,x) 
n 0 -Q#, y) sin(/?t -6.x)] e-unxdfi (4a) 

zlm 
A’.(6) [W, Y)sin@x - Bt) 

n 0 +&(6,y)cos(bx-/?t)]e-‘“d6 

s 

m 

+C Bb(6) [R.@, Y) cos@x -Bt) 
n 0 - S,,(S, y) sin(6x - fit)] e- *da (4b) 

putting x = 0 in expression (4a), and t = 0 in ex- 
pression (4b) 

ISrn 
UW,(P, Y) sin D + Q.(A Y) ~0s hl 43 n 0 

+c s 

cc 
MB)[PnM Y) cos Bt - Q.(A Y) sin @I dB (54 

n 0 

and 

X1* 
A#)[R,(6, y) sin 6x +S,,@, y) cos 6x] d6 

n 0 

+C 
s 

m 
B:(6)[R,(6, y)cos6x-S(6, y)sin6x] da. (5b) 

0 

Recalling the assumption about the completeness 
of the set of functions Pm, Qn and remembering Fourier’s 
integral theorem, inspection of expression (5a) suggests 
that it might be capable of representing a perfectly 
general entry condition from -cc to +oc, in time, 
and from 0 to d in y. If this is so, expression (4a) then 
represents the temperature distribution in the duct due 
to this entry condition. 

Letf& t) be a general inlet condition with 0 < y < d; 
- 00 < t < co. Then by Fourier integral theorem 

I 
m fCv,t) = CM, Y) sin Bt dB + 

s 
m W,Y)cosBtdS 

0 0 

where 

C(B, Y) = 1 7[ Imf(y,U)sinfiudu 
s 00 

and 

W, Y) = i 7L 
s 
;=’ f(Y,u)cosBudu. 

m 

Comparing the above with expression (Sa), it remains 
to find A, and B, satisfying 

c CMW’,(B, Y) - Bn(B)Q.(/% Y)] = CM, Y) 

; C4UOQ.M Y) +UW’&% Y)] = W, Y). 
I 

d d 

A s W%Y) - Q:(Y)I dy - 24 s UPA_V)Q,(Y) dy 
0 0 

s d 

z.z ~CW’n(y) dy - 
0 s : uW)Q.b)dy 

d 

2An UPn(y)Q.(y) dy + Bn s W’,“cV) - Q,Z(y)l dy 
0 

s d = UW)Qnb) dy + UWYV'AY) dy. 
0 

(6) 

From which A, and B, may be found. A method of 
solution for a duct extending from zero to infinity in x 
with an entry condition known from minus infinity to 
plus infinity in time has therefore been established. This 
solution is based on expression (2). As a special case 
of the decay of the general inlet temperature distri- 
bution, in [20] a solution for the decay of inlet 
temperature distribution which varies sinusoidally in 
time is presented; and in [18], a specified consideration 
is given to laminar flow in a parallel plate channel 
for time varying inlet temperature and participating 
walls. 

Expressions (3) similarly form the basis of a method 
of solution for a duct extending from zero to infinity 
in time with an initial condition known from minus 
infinity to plus infinity in x. Let x(x, y) be a general 
initial condition with 0 < y < d, - 00 <: x < co, then 
by Fourier integral theorem 

5 

m 
X(X, Y) = C”(S, y) sin 6x d6 + 

0 s 

m 
D#, y) cos 6x d6 

0 

where Ck(x, y) and D’(6, y) can be determined depending 
on the nature of the orthogonalities involving R and S. 

The case most often occurring in practice is a duct 
which may be deemed to extend from zero to infinity 
in x and also from zero to infinity in time. The 
solution to this problem is found by adding two 
solutions. These are, 

(a) The case of duct extending from zero to infinity 
in x, with zero entry temperature for all t < 0, and the 
correct entry temperature variation for t > 0. 

(b) The case of a duct extending from minus infinity 
to plus infinity in x, with zero initial temperature for 
all x < 0, and the correct initial temperature distri- 
bution for x > 0. 

In (a) the zero entry temperature for all t < 0 means 
that at t = 0 the temperature given by (a) is zero in 
the duct. In (b) the zero initial temperature for all x c 0 
means that at x = 0 the temperature given by (b) is 
zero for all t > 0. . 

4. SOLUTIONS FOR ARBITRARY BOUNDARY 
CONDITIONS 

Boundary conditions of prescribed wall temperature 
and prescribed wall heat flux may be built up by super- 
position from solutions for unit steps in wall tem- 
perature or wall heat flux respectively. 

The complete solution is in general then a sum of 
three terms. These are the initial condition, the entry 
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condition, and the boundary condition. If the initial 
condition is known from minus infinity to plus infinity 
in X, then no entry condition arises. If the entry con- 
dition is known from minus infinity to plus infinity in 
time then no initial condition arises. 

In this section the case of a unit step in wall tem- 
perature of a semi-infinite duct will be found. The step 
is assumed to occur at zero time and to extend over 
all x > 0. From this any arbitrary wall temperature can 
be found. A similar process applies to wall heat flux. 

Let 4 be a solution for unit entry condition for t > 0. 
with zero initial condition for .X > 0, and zero boundary 
condition. Then 

As the frequency /l of the sine wave at the inlet was 
varied, it was possible from these measurements to 
obtain the values of CI and 6 for the lowest eigen- 
function after the higher eigenfunctions excited had 
damped out, Figs. 2 and 3. 

$I = 1 at x = 0 for all t > 0 

4 = 0 at t = 0 for all t > 0 

(i.e. Q, = 0 at x = 0 for all t < 0) 

$=O at!=0 and Y=d 

let Y be a solution for unit initial for x > 0, with zero 
entry condition for t > 0 and zero boundary conditions. 
Then 

I(/ = 0 at x = 0 for all t>o 
(i.e. II/ = 0 at t = 0 for all x < 0) 

$ = 1 at t = 0 for all x > 0 
$=O atY=O and y=d 

Consider 

e=1-4-Y 

0 = 0 at x = 0 for all t > 0 

0 = 0 at t = 0 for all x > 0 
0=1 aty=O and y = d. 

Therefore f3 is the required solution for a step in wall 
temperature with zero initial condition and zero entry 
condition. Similar techniques apply to more com- 
plicated cases. 

5. COMPARISON WITH EXPERIMENT 

The form of equations (2) and (3) suggest that the 
results can be best confirmed experimentally by the 
frequency method. By this method, the parameters 
and eigenvalues appearing in the general solution can 
be determined. An apparatus has been designed and 
used for the frequency analysis of an inlet temperature 
distribution for forced convection with fully developed 
flow between two parallel plates. This apparatus and 
technique was partly described in [20]; but the full 
description of the apparatus and frequency analysis 
methods will be given in another paper. The boundary 
conditions used were zero temperature at one side of 
the duct and zero heat flux at the other. The response 
to the sinusoidal variation of heat input has been 
recorded on a strip-chart. From these recordings the 
amplitudes at various points along the duct have been 
presented in graphical forms for various inlet fre- 
quencies; phase lags in the response to the sinusoidal 
variation of heat input have been determined along the 
duct for various values of Reynolds numbers and inlet 
frequencies [20]. Further experiments have been con- 
ducted for the decay of inlet temperature distribution 
along the duct. 

Frequency, p c/r 

FIG. 2. 

I I I I I / 

Frequency. j3x102 c/s 

FIG. 3. 

6. CONCLUDING REMARKS 

Solutions determine the temperature distribution as 
a function of time and space in the form of the sum 
of two infinite series, each term of which consists of a 
product of an exponential and two functions. These 
solutions mean that any initial temperature or inlet 
temperature distribution may be regarded as the result 
of the superposition of a number of modes of periodic 
distributions. Each decays exponentially with time or 
with the distance along the duct. 

From the experimental results, it is seen that the 
decay of the inlet temperature distribution near the 
entrance region is not a single exponential. It consists 
of modes of higher frequency. The basic mode of the 
inlet temperature varies exponentially along the 
channel and the value of the temperature at a given 
point depends on the inlet frequency and Reynolds 
number. For given fluid as Reynolds number increases 
decay decreases. 

Phase lags have been found to be increasing lihearly 
with distance. Phase lag increases as inlet frequency 
increases and decreases as Reynolds number increases. 



Solution to the equation of transient forced convection 1453 

The apparatus available did not permit the deter- 

mination of y, but construction of a new apparatus is 
being under consideration. 
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UNE SOLUTION ANALYTIQUE GENERALE DE L’EQUATION DE LA CONVECTION 
FORCEE INSTATIONNAIRE EN ECOULEMENT ETABLI 

R&sum&-On donne la solution g&n&ale de l’tquation d’Cnergie pour la dtcroissance d’une distribution 
initiale de temptrature d’admission dans un tcoulement turbulent incompressible instationnaire entre 
deux plaques paralleles avec des conditions aux limites g temperature nulle ou B flux thermique nul 
g la paroi. On montre que ces solutions peuvent alors &re utilistes pour obtenir les solutions correspondant 
& des echelons unit& de la temptrature de paroi ou du flux parittal, suffisantes pour choisir les conditions 
aux limites & temptrature de paroi imposCe ou B flux par&al impost. Les rCsultats sont confirm&s 
exptrimentalement g l’aide de la mCthode de frtquence. Un appareil exptrimental a 8tt concu, rCa1isC 

et utilist dans ce but. 

ALLGEMEINE LdSUNG DER GLEICHUNG FOR ERZWUNGENE KONVEKTION 
IM UBERGANGSBEREICH BEI V~LL AuSGEBILDETER STR~MUNG 

Zusammenfassung-Es wird eine allgemeine Lasung der Energiegleichung fiir den Abbau einer 
anftinglichen Eintrittstemperaturverteilung einer inkompressiblen Strijmung im tibergangsbereich bei 
Wgrmeaustausch zwischen zwei parallelen Platten angegeben. 

Es wird gezeigt, daB diese Lijsungen dann benutzt werden kijnnen, Liisungen fiir schrittweise gelnderte 
Wandtemperaturen oder Wgrmestrame an der Wand zu erhalten, so daD es miiglich wird, nach 
vorgegebenen Randbedingungen fiir Temperatur und Wlirmestrom an der Wand auszulesen. Die 
Ergebnisse werden experimentell mit Hilfe des Frequenzen-Verfahrens bestltigt. Zu diesem Zweck wurde 

ein Versuchsapparat entworfen und aufgebaut. 
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06IlJEE AHAJ’IMTMYECKOE PELUEHME YPABHEHMII HECTA~MOHAPHOI? 
BblHYXflEHHOjl KOHBEKLJMM l-IPM I’IOJIHOCTbKl PA3BIJTOM TEYEHHM 

AmoTauHR- npeRCTaBfleH0 06uee peuIeHlle ypaBHeHAs 3Heprrta npz4 rpaHAVHbIX ycno~asx 

HyJleBOh TeMnepaTypbl CTeHKH H,IH HyJIeBOrO TenJIOBOrO nOTOKa AJIR 3aTyXaEOluerO paCnpeJ,eneHH,l 

TeMnepaTypbl Ha BXOne H Ha'iaJlbHOii TeMnepaTypbl HeCTallHOHapHOrO Typ6yJIeHTHOrO nOTOKa 

HecxKnMaeMoB m~n~oc~~~emny~~y~snapannenb~br~~nnacTu~a~n.~oKa3a~o,~~03T~pe~e~~11, 

Bnaroaapa eACIHM9HblM CKaYKaM B TeMnepaType CTeHKR HJIIl TenJlOBOrO IlOTOKa Ha CTeHKe, MOryT 

6bITb 3aTeM I(CnOJlb30BaHbI AJlR nOJIyYeHWl peIIIeHd C ~aHWiHblMB yCJIOBARMH 3agaHHOii TeM- 

nepaTypbi cTeHKW )I 3anaHHoro TennoBoro noToKa Ha cTeHKe. Pe3ynbTaTbr nonTBepxnaroTcfl 3Kc- 

nepuMeHTanbH0 c nordowbw YacToTHoro MeTona, nna zero 6bma cnpoeKTspoaaHa si nocTpoeHa 

3KCneptrMeHTaJIbHaHyCTaHOBKZl. 


